Digital Electronics

Computer
 and

Electronics Engineering

Roger Sash
Herb Detloff
Alisa Gilmore

Digital Electronics

Objectives:

The objectives of this module are to:

- Become familiar with basic electrical concepts
- Understand and use digital AND and OR logic functions
- Test circuits using circuit simulation software

To accomplish the objectives, we will give you a short overview of electrical and digital logic concepts. You will then work with a partner to build circuits described later in the handout using the Electronic Workbench simulation program. A variety of circuits are described; however, you may not have time to complete the simulation of all of them.

The simulation program we will be using is MultiSim 8 by Electronics Workbench. www.electronicsworkbench.com. It is a user-friendly program which a user can create and test circuits in a relatively short time. It has a variety of components listed in a series of menus. One of the initial difficulties is finding the component you want. The circuits we are going to build start on page 13.

How to Find Components

A list of component icons is shown along with the menu selections used to access them. The order of presentation is the same as the order in which you will be constructing the circuits.

If your menu toolbar only shows icons without the text which identifies them, you need to turn on the text so the toolbar is as shown below:

$\stackrel{+}{+}$	mos	-t	\ldots	\pm	İ	Laps	67	OY	图
Place Source	Place Basic	Place Diode	Place Transistor	Place Analog	Place TTL	Place Cmos	Place Misc Digital	Place Mixed	Place Indicator

How to turn on the Toolbar text

Circuit 1：

$\frac{\perp}{\Psi_{\mathrm{T}}^{2}} \mathrm{~V}_{12} \mathrm{v}$	Place Source 4	Select a Componen		
		Database：	Component：	Symbol（ANSI）
		Master Database \quad－	AC＿POWER	
		Group：	DC＿POWER	
		$\stackrel{\square}{\text { ¢ }}$ Sources	DGND	
		Family：	GROUND	\％
		（ait）POWER＿SOURC．．．	NON＿IDEAL＿BATTERY	$\underline{\text {－}}$
		（迆）SIGNAL＿VOLTAG．．．	THREE＿PHASE＿DELTA	I
		（i）SIGNAL＿CURRE．．．	THREE＿PHASE＿WYE VCC	
		［1］CONTROL＿FUNC．．．	VDD	
		的 CONTROLLED＿V．．．	VEE	
		聎 CONTROLLED＿C．．．	VSS	tion：
				Ollage Source

Circuit 3:

Circuit 4:

这 Select a Component

Master Datab	\checkmark
Group:	
\pm Sources	\checkmark
Family:	
[iEF) POWER_SOURC...	
((\%) SIGNAL_VOLTAG...	
(兌) SIGNAL_CURRE...	
\pm CONTROL FUNC...	

Component:	Symbol (ANSI)
AC_POWER	
DC_POWER	
DGND	
GROUND	
NON_IDEAL_BATTERY	1
THREE_PHASE_DELTA	
THREE_PHASE_WYE	
WCL	
VDD	

Circuit 5:

Double click the buzzer icon to change the buzzer to work with 5 volts.

Circuit 6:

Same as the 74LS90N except select 74LS47N.

Double click on symbol to set values on the device.

If the circuit is running when You change its speed, you will have to stop it and start it again for the new value to be recognized.

Circuit 7:

Changing Page Size: Edit | Properties |

Circuit 8:

Naming a Wire

A warning you get if you have previously used the same name.

Yes No

Simulating Circuits

The circuits which we will construct and simulate are digital. In a digital circuit we are only concerned if a signal is present or not. A switch is an example of a digital circuit. It is either on or off. Terms used for the presence of a signal are on, high, true, and one. Terms used for the absence of a signal are off, low, false and zero. The following circuit shows how switches are wired in homes to make a one-way switch circuit and a three-way switch circuit.

Circuit 1 - Wiring Residential Switches

This circuit shows how typical "one-way" and "three-way" switches are wired. Switch A is wired as a one-way switch. Switches B and C are wired as threeway switches.

Digital circuits are constructed so that they perform logic functions. The two most basic logic functions are the AND and OR. An AND circuit gives an output signal if all of its inputs (switches) are true (on). An OR circuit gives an output signal if at least one of its inputs is on. The following circuit shows how switches are wired to implement these functions.

Circuit 2 - Switches as Logic Elements
The upper switches which are in a row (series) implement an AND gate.
Switches A AND B AND C must be closed to light the light.
The lower switches which are in parallel implement an OR gate. Switch A OR switch B OR switch C must be closed to light the light.
Do Not Simulate

The following example shows how switches can be combined to make a "real" circuit. This implements a simple "Idiot Buzzer" system on an automobile. The buzzer will sound if:
the key is in the ignition AND the door is open

OR the key is in the ignition AND the seat belts are not connected
OR the lights are on AND the door is open.
Note: A light is used in addition to the buzzer.

This circuit uses the ground Symbol . $\quad \perp$ All parts of the circuit which have the ground symbol are physically connected together even though the schematic does not show it.

There are symbols to represent the logic functions. The input signals are on the left and the output is on the right. These symbols show three signals ANDed and Ored but there could be any number of inputs. These symbols are normally used when the logic function is built using integrated circuits.

This circuit uses the integrated circuit symbols for the AND and OR logic gates.

Circuit 4 - Integrated Circuit Logic Gates
Most integrated circuits use a 5 volt supply which is commonly referred to as Vcc. The symbol $\stackrel{+V c c}{\mid}$ represents the 5 volt battery. We also are using the LED symbol \rightarrow instead of a regular light.

This is how the integrated circuit form of the automobile idiot buzzer system would look.

Decimal Numbers in Computers

Many applications require the use of a counter. The next circuit will count from 0 to 9 in binary. The binary number system uses base 2. Characters in the right column (sometimes labeled a) have the value 2^{0}. In the next column to the left (labeled b) they have the value 2^{1}. The next column (labeled c) is 2^{2}. The next (d) is 2^{3}. They evaluate from left to right as 8-4-2-1. The binary numbers from zero through 9 are:

For ease of use, we are using a modified binary system which only has values of zero through nine. This is referred to as binary coded decimal (BCD).

Binary	Decimal		
d c c b a			
8	4	2	1
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1

The next circuit consists of a signal generator

set to give one transition per second. The counter integrated circuit, 7490, counts the transitions in binary and the value is shown on the four LED displays. The binary signals need to be converted to drive a 7 segment display. The binary to 7 segment decoder performs this task.

Next we will make a two decade counter which will count from 00 to 99 . Change the size of the drawing sheet to size B. Move the circuit to the right side of the page by doing Edit | Select All (control A) and dragging the components to the desired position. Make a copy of the circuit by Select All and Paste (control V). Delete the signal generator on the left counter. The QD signal of the least significant digit will be used to clock the next stage. Place a wire from INA to QD.

Create the following circuit. Use the DGND for the GND component. Use the DCD_HEX component which combines the decoding and display in one component. This will speed simulation so the circuit will count faster. The switch will cause the counter to reset when connected to Vcc and to count normally when connected to ground. Double click on the wire connected to R01 and name the net Reset.

Circuit 8. Counter with Display

Copy the circuit three times to make a four digit counter. Double click the wire connected to R01 and name it Reset. You should get a warning that that name has been used. Click OK. This will make a connection between both wire named Reset without having to draw the line. Do the same to the other two counters. Connect the QD of a counter to the INA of the next counter. Set the clock frequency to 1000 Hx . Remember to stop and then start the simulation after changing the clock speed.

Circuit 9

Hands-on Simulation:

In the time remaining before the break, you will construct and simulate some of the circuits discussed. You will do circuits in the following order. If you are running short of time, skip some of the first ones so you can finish circuits 3,5 , and 6 . We will be building circuits 5 and 6 in the second portion of the module so it is helpful if you can finish and understand these two.
> Circuit 1: Wiring Residential Switches Circuit 2: Switches as Logic Elements Do not simulate
> Circuit 3: Automobile Buzzer System
Circuit 4: Integrated Circuit Logic Gates Do not simulate
$>$ Circuit 5: Integrated Circuit Form of Automobile Buzzer System
$>\quad$ Circuit 6: Binary Counter - Seven Segment Decoder
Circuit 7: Two Digit Binary Counter - Seven Segment Decoder
Circuit 8: Simplified Binary Counter - Seven Segment Display
Circuit 9: Four Digit Binary Counter - Seven Segment Decoder

References:

Simulation Software:
Electronics Workbench USA
60 Industrial Park, \#068
Cheektowaga, NY 14227
www.electronicsworkbench.com

Electronic Components:
Jameco Electronic Components
1355 Shoreway Road
Belmont, CA 94002
www.jameco.com
Breadboard:
PAD_234 Digital/Analog Trainer
Electronix Express
365 Blair Road
Avene l, New Jersey 07001
www.elexp.com/tst_234.htm

